Opcode/Instruction | Op/En | 64/32 -bit Mode | CPUID Feature Flag | Description |
---|---|---|---|---|
VEX.NDS.128.66.0F38.W0 47 /r VPSLLVD xmm1, xmm2, xmm3/m128 |
RVM | V/V | AVX2 | Shift bits in doublewords in xmm2 left by amount speci-fied in the corresponding element of xmm3/m128 while shifting in 0s. |
VEX.NDS.128.66.0F38.W1 47 /r VPSLLVQ xmm1, xmm2, xmm3/m128 |
RVM | V/V | AVX2 | Shift bits in quadwords in xmm2 left by amount speci-fied in the corresponding element of xmm3/m128 while shifting in 0s. |
VEX.NDS.256.66.0F38.W0 47 /r VPSLLVD ymm1, ymm2, ymm3/m256 |
RVM | V/V | AVX2 | Shift bits in doublewords in ymm2 left by amount speci-fied in the corresponding element of ymm3/m256 while shifting in 0s. |
VEX.NDS.256.66.0F38.W1 47 /r VPSLLVQ ymm1, ymm2, ymm3/m256 |
RVM | V/V | AVX2 | Shift bits in quadwords in ymm2 left by amount speci-fied in the corresponding element of ymm3/m256 while shifting in 0s. |
Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
RVM | ModRM:reg (w) | VEX.vvvv | ModRM:r/m (r) | NA |
Shifts the bits in the individual data elements (doublewords, or quadword) in the first source operand to the left by the count value of respective data elements in the second source operand. As the bits in the data elements are shifted left, the empty low-order bits are cleared (set to 0).
The count values are specified individually in each data element of the second source operand. If the unsigned integer value specified in the respective data element of the second source operand is greater than 31 (for double-words), or 63 (for a quadword), then the destination data element are written with 0.
VEX.128 encoded version: The destination and first source operands are XMM registers. The count operand can be either an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM register are zeroed.
VEX.256 encoded version: The destination and first source operands are YMM registers. The count operand can be either an YMM register or a 256-bit memory location.
VPSLLVD (VEX.128 version)
COUNT_0 ← SRC2[31 : 0] (* Repeat Each COUNT_i for the 2nd through 4th dwords of SRC2*) COUNT_3 ← SRC2[127 : 96]; IF COUNT_0 < 32 THEN DEST[31:0] ← ZeroExtend(SRC1[31:0] << COUNT_0); ELSE DEST[31:0] ← 0; (* Repeat shift operation for 2nd through 4th dwords *) IF COUNT_3 < 32 THEN DEST[127:96] ← ZeroExtend(SRC1[127:96] << COUNT_3); ELSE DEST[127:96] ← 0; DEST[VLMAX-1:128] ← 0;
VPSLLVD (VEX.256 version)
COUNT_0 ← SRC2[31 : 0]; (* Repeat Each COUNT_i for the 2nd through 7th dwords of SRC2*) COUNT_7 ← SRC2[255 : 224]; IF COUNT_0 < 32 THEN DEST[31:0] ← ZeroExtend(SRC1[31:0] << COUNT_0); ELSE DEST[31:0] ← 0; (* Repeat shift operation for 2nd through 7th dwords *) IF COUNT_7 < 32 THEN DEST[255:224] ← ZeroExtend(SRC1[255:224] << COUNT_7); ELSE DEST[255:224] ← 0;
VPSLLVQ (VEX.128 version)
COUNT_0 ← SRC2[63 : 0]; COUNT_1 ← SRC2[127 : 64]; IF COUNT_0 < 64THEN DEST[63:0] ← ZeroExtend(SRC1[63:0] << COUNT_0); ELSE DEST[63:0] ← 0; IF COUNT_1 < 64 THEN DEST[127:64] ← ZeroExtend(SRC1[127:64] << COUNT_1); ELSE DEST[127:96] ← 0; DEST[VLMAX-1:128] ← 0;
VPSLLVQ (VEX.256 version)
COUNT_0 ← SRC2[5 : 0]; (* Repeat Each COUNT_i for the 2nd through 4th dwords of SRC2*) COUNT_3 ← SRC2[197 : 192]; IF COUNT_0 < 64THEN DEST[63:0] ← ZeroExtend(SRC1[63:0] << COUNT_0); ELSE DEST[63:0] ← 0; (* Repeat shift operation for 2nd through 4th dwords *) IF COUNT_3 < 64 THEN DEST[255:192] ← ZeroExtend(SRC1[255:192] << COUNT_3); ELSE DEST[255:192] ← 0;
VPSLLVD: __m256i _mm256_sllv_epi32 (__m256i m, __m256i count)
VPSLLVD: __m128i _mm_sllv_epi32 (__m128i m, __m128i count)
VPSLLVQ: __m256i _mm256_sllv_epi64 (__m256i m, __m256i count)
VPSLLVQ: __m128i _mm_sllv_epi64 (__m128i m, __m128i count)
None
See Exceptions Type 4