Opcode/Instruction | Op/En | 64/32 -bit Mode | CPUID Feature Flag | Description |
---|---|---|---|---|
VEX.DDS.128.66.0F38.W1 9E /r VFNMSUB132PD xmm0, xmm1, xmm2/m128 |
A | V/V | FMA | Multiply packed double-precision floating-point val-ues from xmm0 and xmm2/mem, negate the multi-plication result and subtract xmm1 and put result in xmm0. |
VEX.DDS.128.66.0F38.W1 AE /r VFNMSUB213PD xmm0, xmm1, xmm2/m128 |
A | V/V | FMA | Multiply packed double-precision floating-point val-ues from xmm0 and xmm1, negate the multiplica-tion result and subtract xmm2/mem and put result in xmm0. |
VEX.DDS.128.66.0F38.W1 BE /r VFNMSUB231PD xmm0, xmm1, xmm2/m128 |
A | V/V | FMA | Multiply packed double-precision floating-point val-ues from xmm1 and xmm2/mem, negate the multi-plication result and subtract xmm0 and put result in xmm0. |
VEX.DDS.256.66.0F38.W1 9E /r VFNMSUB132PD ymm0, ymm1, ymm2/m256 |
A | V/V | FMA | Multiply packed double-precision floating-point val-ues from ymm0 and ymm2/mem, negate the multi-plication result and subtract ymm1 and put result in ymm0. |
VEX.DDS.256.66.0F38.W1 AE /r VFNMSUB213PD ymm0, ymm1, ymm2/m256 |
A | V/V | FMA | Multiply packed double-precision floating-point val-ues from ymm0 and ymm1, negate the multiplica-tion result and subtract ymm2/mem and put result in ymm0. |
VEX.DDS.256.66.0F38.W1 BE /r VFNMSUB231PD ymm0, ymm1, ymm2/m256 |
A | V/V | FMA | Multiply packed double-precision floating-point val-ues from ymm1 and ymm2/mem, negate the multi-plication result and subtract ymm0 and put result in ymm0. |
Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
A | ModRM:reg (r, w) | VEX.vvvv (r) | ModRM:r/m (r) | NA |
VFNMSUB132PD: Multiplies the two or four packed double-precision floating-point values from the first source operand to the two or four packed double-precision floating-point values in the third source operand. From negated infinite precision intermediate results, subtracts the two or four packed double-precision floating-point values in the second source operand, performs rounding and stores the resulting two or four packed double-precision floating-point values to the destination operand (first source operand).
VFMSUB213PD: Multiplies the two or four packed double-precision floating-point values from the second source operand to the two or four packed double-precision floating-point values in the first source operand. From negated infinite precision intermediate results, subtracts the two or four packed double-precision floating-point values in the third source operand, performs rounding and stores the resulting two or four packed double-precision floating-point values to the destination operand (first source operand).
VFMSUB231PD: Multiplies the two or four packed double-precision floating-point values from the second source to the two or four packed double-precision floating-point values in the third source operand. From negated infinite precision intermediate results, subtracts the two or four packed double-precision floating-point values in the first source operand, performs rounding and stores the resulting two or four packed double-precision floating-point values to the destination operand (first source operand).
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination register are zeroed.
VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a YMM register or a 256-bit memory location and encoded in rm_field.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction column. See also Section 14.5.1, “FMA Instruction Operand Order and Arithmetic Behavior” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.
In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations with infinite precision inputs and outputs (no rounding).
VFNMSUB132PD DEST, SRC2, SRC3
IF (VEX.128) THEN MAXVL =2 ELSEIF (VEX.256) MAXVL = 4 FI For i = 0 to MAXVL-1 { n = 64*i; DEST[n+63:n] ← RoundFPControl_MXCSR( - (DEST[n+63:n]*SRC3[n+63:n]) - SRC2[n+63:n]) } IF (VEX.128) THEN DEST[VLMAX-1:128] ← 0 FI
VFNMSUB213PD DEST, SRC2, SRC3
IF (VEX.128) THEN MAXVL =2 ELSEIF (VEX.256) MAXVL = 4 FI For i = 0 to MAXVL-1 { n = 64*i; DEST[n+63:n] ← RoundFPControl_MXCSR( - (SRC2[n+63:n]*DEST[n+63:n]) - SRC3[n+63:n]) } IF (VEX.128) THEN DEST[VLMAX-1:128] ← 0 FI
VFNMSUB231PD DEST, SRC2, SRC3
IF (VEX.128) THEN MAXVL =2 ELSEIF (VEX.256) MAXVL = 4 FI For i = 0 to MAXVL-1 { n = 64*i; DEST[n+63:n] ← RoundFPControl_MXCSR( - (SRC2[n+63:n]*SRC3[n+63:n]) - DEST[n+63:n]) } IF (VEX.128) THEN DEST[VLMAX-1:128] ← 0 FI
VFNMSUB132PD: __m128d _mm_fnmsub_pd (__m128d a, __m128d b, __m128d c);
VFNMSUB213PD: __m128d _mm_fnmsub_pd (__m128d a, __m128d b, __m128d c);
VFNMSUB231PD: __m128d _mm_fnmsub_pd (__m128d a, __m128d b, __m128d c);
VFNMSUB132PD: __m256d _mm256_fnmsub_pd (__m256d a, __m256d b, __m256d c);
VFNMSUB213PD: __m256d _mm256_fnmsub_pd (__m256d a, __m256d b, __m256d c);
VFNMSUB231PD: __m256d _mm256_fnmsub_pd (__m256d a, __m256d b, __m256d c);
Overflow, Underflow, Invalid, Precision, Denormal
See Exceptions Type 2