Description
CPUID
Opcode/
Op/
64/32 bit
Feature
Instruction
En
Mode
Flag
Support
0F D1 /r1
RM
V/V
MMX
Shift words in mm right by amount specified in mm/m64 while shifting in 0s.
PSRLW mm, mm/m64
66 0F D1 /r
RM
V/V
SSE2
Shift words in xmm1 right by amount specified in xmm2/m128 while shifting in 0s.
PSRLW xmm1, xmm2/m128
MI
V/V
MMX
Shift words in mm right by imm8 while shifting
0F 71 /2 ib1
in 0s.
PSRLW mm, imm8
66 0F 71 /2 ib
MI
V/V
SSE2
Shift words in xmm1 right by imm8 while shifting in 0s.
PSRLW xmm1, imm8
RM
V/V
MMX
Shift doublewords in mm right by amount
0F D2 /r1
specified in mm/m64 while shifting in 0s.
PSRLD mm, mm/m64
66 0F D2 /r
RM
V/V
SSE2
Shift doublewords in xmm1 right by amount specified in xmm2 /m128 while shifting in 0s.
PSRLD xmm1, xmm2/m128
0F 72 /2 ib1
MI
V/V
MMX
Shift doublewords in mm right by imm8 while shifting in 0s.
PSRLD mm, imm8
66 0F 72 /2 ib
MI
V/V
SSE2
Shift doublewords in xmm1 right by imm8 while shifting in 0s.
PSRLD xmm1, imm8
RM
V/V
MMX
Shift mm right by amount specified in
0F D3 /r1
mm/m64 while shifting in 0s.
PSRLQ mm, mm/m64
66 0F D3 /r
RM
V/V
SSE2
Shift quadwords in xmm1 right by amount specified in xmm2/m128 while shifting in 0s.
PSRLQ xmm1, xmm2/m128
MI
V/V
MMX
Shift mm right by imm8 while shifting in 0s.
0F 73 /2 ib1
PSRLQ mm, imm8
66 0F 73 /2 ib
MI
V/V
SSE2
Shift quadwords in xmm1 right by imm8 while shifting in 0s.
PSRLQ xmm1, imm8
VEX.NDS.128.66.0F.WIG D1 /r
RVM
V/V
AVX
Shift words in xmm2 right by amount specified in xmm3/m128 while shifting in 0s.
VPSRLW xmm1, xmm2, xmm3/m128
VEX.NDD.128.66.0F.WIG 71 /2 ib
VMI
V/V
AVX
Shift words in xmm2 right by imm8 while shifting in 0s.
VPSRLW xmm1, xmm2, imm8
VEX.NDS.128.66.0F.WIG D2 /r
RVM
V/V
AVX
Shift doublewords in xmm2 right by amount specified in xmm3/m128 while shifting in 0s.
VPSRLD xmm1, xmm2, xmm3/m128
VEX.NDD.128.66.0F.WIG 72 /2 ib
VMI
V/V
AVX
Shift doublewords in xmm2 right by imm8 while shifting in 0s.
VPSRLD xmm1, xmm2, imm8
VEX.NDS.128.66.0F.WIG D3 /r
RVM
V/V
AVX
Shift quadwords in xmm2 right by amount specified in xmm3/m128 while shifting in 0s.
VPSRLQ xmm1, xmm2, xmm3/m128
VEX.NDD.128.66.0F.WIG 73 /2 ib
VMI
V/V
AVX
Shift quadwords in xmm2 right by imm8 while shifting in 0s.
VPSRLQ xmm1, xmm2, imm8
VEX.NDS.256.66.0F.WIG D1 /r
RVM
V/V
AVX2
Shift words in ymm2 right by amount specified in xmm3/m128 while shifting in 0s.
VPSRLW ymm1, ymm2, xmm3/m128
VEX.NDD.256.66.0F.WIG 71 /2 ib
VMI
V/V
AVX2
Shift words in ymm2 right by imm8 while shifting in 0s.
VPSRLW ymm1, ymm2, imm8
VEX.NDS.256.66.0F.WIG D2 /r
RVM
V/V
AVX2
Shift doublewords in ymm2 right by amount specified in xmm3/m128 while shifting in 0s.
VPSRLD ymm1, ymm2, xmm3/m128
VEX.NDD.256.66.0F.WIG 72 /2 ib
VMI
V/V
AVX2
Shift doublewords in ymm2 right by imm8 while shifting in 0s.
VPSRLD ymm1, ymm2, imm8
VEX.NDS.256.66.0F.WIG D3 /r
RVM
V/V
AVX2
Shift quadwords in ymm2 right by amount specified in xmm3/m128 while shifting in 0s.
VPSRLQ ymm1, ymm2, xmm3/m128
VEX.NDD.256.66.0F.WIG 73 /2 ib
VMI
V/V
AVX2
Shift quadwords in ymm2 right by imm8 while shifting in 0s.
VPSRLQ ymm1, ymm2, imm8
NOTES:
1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
RM | ModRM:reg (r, w) | ModRM:r/m (r) | NA | NA |
MI | ModRM:r/m (r, w) | imm8 | NA | NA |
RVM | ModRM:reg (w) | VEX.vvvv (r) | ModRM:r/m (r) | NA |
VMI | VEX.vvvv (w) | ModRM:r/m (r) | imm8 | NA |
Shifts the bits in the individual data elements (words, doublewords, or quadword) in the destination operand (first operand) to the right by the number of bits specified in the count operand (second operand). As the bits in the data elements are shifted right, the empty high-order bits are cleared (set to 0). If the value specified by the count operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a quadword), then the destination operand is set to all 0s. Figure 4-15 gives an example of shifting words in a 64-bit operand.
Note that only the first 64-bits of a 128-bit count operand are checked to compute the count.
The (V)PSRLW instruction shifts each of the words in the destination operand to the right by the number of bits specified in the count operand; the (V)PSRLD instruction shifts each of the doublewords in the destination operand; and the PSRLQ instruction shifts the quadword (or quadwords) in the destination operand.
In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15).
Legacy SSE instructions: The destination operand is an MMX technology register; the count operand can be either an MMX technology register or an 64-bit memory location.
128-bit Legacy SSE version: The destination operand is an XMM register; the count operand can be either an XMM register or a 128-bit memory location, or an 8-bit immediate. If the count operand is a memory address, 128 bits
are loaded but the upper 64 bits are ignored. Bits (VLMAX-1:128) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: The destination operand is an XMM register; the count operand can be either an XMM register or a 128-bit memory location, or an 8-bit immediate. If the count operand is a memory address, 128 bits are loaded but the upper 64 bits are ignored. Bits (VLMAX-1:128) of the destination YMM register are zeroed.
VEX.256 encoded version: The destination and first source operands are YMM registers. The count operand can be either an YMM register or a 128-bit memory location or an 8-bit immediate.
Note: For shifts with an immediate count (VEX.128.66.0F 71-73 /2), VEX.vvvv encodes the destination register, and VEX.B + ModRM.r/m encodes the source register. VEX.L must be 0, otherwise instructions will #UD.
PSRLW (with 64-bit operand)
IF (COUNT > 15) THEN DEST[64:0] ← 0000000000000000H ELSE DEST[15:0] ← ZeroExtend(DEST[15:0] >> COUNT); (* Repeat shift operation for 2nd and 3rd words *) DEST[63:48] ← ZeroExtend(DEST[63:48] >> COUNT); FI;
PSRLD (with 64-bit operand)
IF (COUNT > 31) THEN DEST[64:0] ← 0000000000000000H ELSE DEST[31:0] ← ZeroExtend(DEST[31:0] >> COUNT); DEST[63:32] ← ZeroExtend(DEST[63:32] >> COUNT); FI;
PSRLQ (with 64-bit operand)
IF (COUNT > 63) THEN DEST[64:0] ← 0000000000000000H ELSE DEST ← ZeroExtend(DEST >> COUNT); FI;
PSRLW (with 128-bit operand)
COUNT ← COUNT_SOURCE[63:0]; IF (COUNT > 15) THEN DEST[128:0] ← 00000000000000000000000000000000H ELSE DEST[15:0] ← ZeroExtend(DEST[15:0] >> COUNT); (* Repeat shift operation for 2nd through 7th words *) DEST[127:112] ← ZeroExtend(DEST[127:112] >> COUNT); FI;
PSRLD (with 128-bit operand)
COUNT ← COUNT_SOURCE[63:0]; IF (COUNT > 31) THEN DEST[128:0] ← 00000000000000000000000000000000H ELSE DEST[31:0] ← ZeroExtend(DEST[31:0] >> COUNT); (* Repeat shift operation for 2nd and 3rd doublewords *) DEST[127:96] ← ZeroExtend(DEST[127:96] >> COUNT); FI;
PSRLQ (with 128-bit operand)
COUNT ← COUNT_SOURCE[63:0]; IF (COUNT > 15) THEN DEST[128:0] ← 00000000000000000000000000000000H ELSE DEST[63:0] ← ZeroExtend(DEST[63:0] >> COUNT); DEST[127:64] ← ZeroExtend(DEST[127:64] >> COUNT); FI;
PSRLW (xmm, xmm, xmm/m128)
DEST[127:0] ← LOGICAL_RIGHT_SHIFT_WORDS(DEST, SRC) DEST[VLMAX-1:128] (Unmodified)
PSRLW (xmm, imm8)
DEST[127:0] ← LOGICAL_RIGHT_SHIFT_WORDS(DEST, imm8) DEST[VLMAX-1:128] (Unmodified)
VPSRLW (xmm, xmm, xmm/m128)
DEST[127:0] ← LOGICAL_RIGHT_SHIFT_WORDS(SRC1, SRC2) DEST[VLMAX-1:128] ← 0
VPSRLW (xmm, imm8)
DEST[127:0] ← LOGICAL_RIGHT_SHIFT_WORDS(SRC1, imm8) DEST[VLMAX-1:128] ← 0
PSRLD (xmm, xmm, xmm/m128)
DEST[127:0] ← LOGICAL_RIGHT_SHIFT_DWORDS(DEST, SRC) DEST[VLMAX-1:128] (Unmodified)
PSRLD (xmm, imm8)
DEST[127:0] ← LOGICAL_RIGHT_SHIFT_DWORDS(DEST, imm8) DEST[VLMAX-1:128] (Unmodified)
VPSRLD (xmm, xmm, xmm/m128)
DEST[127:0] ← LOGICAL_RIGHT_SHIFT_DWORDS(SRC1, SRC2) DEST[VLMAX-1:128] ← 0
VPSRLD (xmm, imm8)
DEST[127:0] ← LOGICAL_RIGHT_SHIFT_DWORDS(SRC1, imm8) DEST[VLMAX-1:128] ← 0
PSRLQ (xmm, xmm, xmm/m128)
DEST[127:0] ← LOGICAL_RIGHT_SHIFT_QWORDS(DEST, SRC) DEST[VLMAX-1:128] (Unmodified)
PSRLQ (xmm, imm8)
DEST[127:0] ← LOGICAL_RIGHT_SHIFT_QWORDS(DEST, imm8) DEST[VLMAX-1:128] (Unmodified)
VPSRLQ (xmm, xmm, xmm/m128)
DEST[127:0] ← LOGICAL_RIGHT_SHIFT_QWORDS(SRC1, SRC2) DEST[VLMAX-1:128] ← 0
VPSRLQ (xmm, imm8)
DEST[127:0] ← LOGICAL_RIGHT_SHIFT_QWORDS(SRC1, imm8) DEST[VLMAX-1:128] ← 0
VPSRLW (ymm, ymm, xmm/m128)
DEST[255:0] ← LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1, SRC2)
VPSRLW (ymm, imm8)
DEST[255:0] ← LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1, imm8)
VPSRLD (ymm, ymm, xmm/m128)
DEST[255:0] ← LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1, SRC2)
VPSRLD (ymm, imm8)
DEST[255:0] ← LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1, imm8)
VPSRLQ (ymm, ymm, xmm/m128)
DEST[255:0] ← LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1, SRC2)
VPSRLQ (ymm, imm8)
DEST[255:0] ← LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1, imm8)
PSRLW:
__m64 _mm_srli_pi16(__m64 m, int count)
PSRLW:
__m64 _mm_srl_pi16 (__m64 m, __m64 count)
(V)PSRLW:
__m128i _mm_srli_epi16 (__m128i m, int count)
(V)PSRLW:
__m128i _mm_srl_epi16 (__m128i m, __m128i count)
VPSRLW:
__m256i _mm256_srli_epi16 (__m256i m, int count)
VPSRLW:
__m256i _mm256_srl_epi16 (__m256i m, __m128i count)
PSRLD:
__m64 _mm_srli_pi32 (__m64 m, int count)
PSRLD:
__m64 _mm_srl_pi32 (__m64 m, __m64 count)
(V)PSRLD:
__m128i _mm_srli_epi32 (__m128i m, int count)
(V)PSRLD:
__m128i _mm_srl_epi32 (__m128i m, __m128i count)
VPSRLD:
__m256i _mm256_srli_epi32 (__m256i m, int count)
VPSRLD:
__m256i _mm256_srl_epi32 (__m256i m, __m128i count)
PSRLQ:
__m64 _mm_srli_si64 (__m64 m, int count)
PSRLQ:
__m64 _mm_srl_si64 (__m64 m, __m64 count)
(V)PSRLQ:
__m128i _mm_srli_epi64 (__m128i m, int count)
(V)PSRLQ:
__m128i _mm_srl_epi64 (__m128i m, __m128i count)
VPSRLQ:
__m256i _mm256_srli_epi64 (__m256i m, int count)
VPSRLQ:
__m256i _mm256_srl_epi64 (__m256i m, __m128i count)
None.
None.
See Exceptions Type 4 and 7 for non-VEX-encoded instructions; additionally
#UD | If VEX.L = 1. |