Description
CPUID
Opcode/
Op/
64/32 bit
Feature
Instruction
En
Mode
Flag
Support
0F F1 /r1
RM
V/V
MMX
Shift words in mm left mm/m64 while shifting in 0s.
PSLLW mm, mm/m64
66 0F F1 /r
RM
V/V
SSE2
Shift words in xmm1 left by xmm2/m128 while shifting in 0s.
PSLLW xmm1, xmm2/m128
0F 71 /6 ib
MI
V/V
MMX
Shift words in mm left by imm8 while shifting in 0s.
PSLLW mm1, imm8
66 0F 71 /6 ib
MI
V/V
SSE2
Shift words in xmm1 left by imm8 while shifting in 0s.
PSLLW xmm1, imm8
RM
V/V
MMX
Shift doublewords in mm left by mm/m64
0F F2 /r1
while shifting in 0s.
PSLLD mm, mm/m64
66 0F F2 /r
RM
V/V
SSE2
Shift doublewords in xmm1 left by xmm2/m128 while shifting in 0s.
PSLLD xmm1, xmm2/m128
0F 72 /6 ib1
MI
V/V
MMX
Shift doublewords in mm left by imm8 while shifting in 0s.
PSLLD mm, imm8
66 0F 72 /6 ib
MI
V/V
SSE2
Shift doublewords in xmm1 left by imm8 while shifting in 0s.
PSLLD xmm1, imm8
RM
V/V
MMX
Shift quadword in mm left by mm/m64 while
0F F3 /r1
shifting in 0s.
PSLLQ mm, mm/m64
66 0F F3 /r
RM
V/V
SSE2
Shift quadwords in xmm1 left by xmm2/m128 while shifting in 0s.
PSLLQ xmm1, xmm2/m128
MI
V/V
MMX
Shift quadword in mm left by imm8 while
0F 73 /6 ib1
shifting in 0s.
PSLLQ mm, imm8
66 0F 73 /6 ib
MI
V/V
SSE2
Shift quadwords in xmm1 left by imm8 while shifting in 0s.
PSLLQ xmm1, imm8
VEX.NDS.128.66.0F.WIG F1 /r
RVM
V/V
AVX
Shift words in xmm2 left by amount specified in xmm3/m128 while shifting in 0s.
VPSLLW xmm1, xmm2, xmm3/m128
VEX.NDD.128.66.0F.WIG 71 /6 ib
VMI
V/V
AVX
Shift words in xmm2 left by imm8 while shifting in 0s.
VPSLLW xmm1, xmm2, imm8
VEX.NDS.128.66.0F.WIG F2 /r
RVM
V/V
AVX
Shift doublewords in xmm2 left by amount specified in xmm3/m128 while shifting in 0s.
VPSLLD xmm1, xmm2, xmm3/m128
VEX.NDD.128.66.0F.WIG 72 /6 ib
VMI
V/V
AVX
Shift doublewords in xmm2 left by imm8 while shifting in 0s.
VPSLLD xmm1, xmm2, imm8
VEX.NDS.128.66.0F.WIG F3 /r
RVM
V/V
AVX
Shift quadwords in xmm2 left by amount specified in xmm3/m128 while shifting in 0s.
VPSLLQ xmm1, xmm2, xmm3/m128
VEX.NDD.128.66.0F.WIG 73 /6 ib
VMI
V/V
AVX
Shift quadwords in xmm2 left by imm8 while shifting in 0s.
VPSLLQ xmm1, xmm2, imm8
VEX.NDS.256.66.0F.WIG F1 /r
RVM
V/V
AVX2
Shift words in ymm2 left by amount specified in xmm3/m128 while shifting in 0s.
VPSLLW ymm1, ymm2, xmm3/m128
VEX.NDD.256.66.0F.WIG 71 /6 ib
VMI
V/V
AVX2
Shift words in ymm2 left by imm8 while shifting in 0s.
VPSLLW ymm1, ymm2, imm8
VEX.NDS.256.66.0F.WIG F2 /r
RVM
V/V
AVX2
Shift doublewords in ymm2 left by amount specified in xmm3/m128 while shifting in 0s.
VPSLLD ymm1, ymm2, xmm3/m128
VEX.NDD.256.66.0F.WIG 72 /6 ib
VMI
V/V
AVX2
Shift doublewords in ymm2 left by imm8 while shifting in 0s.
VPSLLD ymm1, ymm2, imm8
VEX.NDS.256.66.0F.WIG F3 /r
RVM
V/V
AVX2
Shift quadwords in ymm2 left by amount specified in xmm3/m128 while shifting in 0s.
VPSLLQ ymm1, ymm2, xmm3/m128
VEX.NDD.256.66.0F.WIG 73 /6 ib
VMI
V/V
AVX2
Shift quadwords in ymm2 left by imm8 while shifting in 0s.
VPSLLQ ymm1, ymm2, imm8
NOTES:
1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
RM | ModRM:reg (r, w) | ModRM:r/m (r) | NA | NA |
MI | ModRM:r/m (r, w) | imm8 | NA | NA |
RVM | ModRM:reg (w) | VEX.vvvv (r) | ModRM:r/m (r) | NA |
VMI | VEX.vvvv (w) | ModRM:r/m (r) | imm8 | NA |
Shifts the bits in the individual data elements (words, doublewords, or quadword) in the destination operand (first operand) to the left by the number of bits specified in the count operand (second operand). As the bits in the data elements are shifted left, the empty low-order bits are cleared (set to 0). If the value specified by the count operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a quadword), then the destination operand is set to all 0s. Figure 4-13 gives an example of shifting words in a 64-bit operand.
The (V)PSLLW instruction shifts each of the words in the destination operand to the left by the number of bits spec-ified in the count operand; the (V)PSLLD instruction shifts each of the doublewords in the destination operand; and the (V)PSLLQ instruction shifts the quadword (or quadwords) in the destination operand.
In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15).
Legacy SSE instructions: The destination operand is an MMX technology register; the count operand can be either an MMX technology register or an 64-bit memory location.
128-bit Legacy SSE version: The destination and first source operands are XMM registers. Bits (VLMAX-1:128) of the corresponding YMM destination register remain unchanged. The count operand can be either an XMM register or a 128-bit memory location or an 8-bit immediate. If the count operand is a memory address, 128 bits are loaded but the upper 64 bits are ignored.
VEX.128 encoded version: The destination and first source operands are XMM registers. Bits (VLMAX-1:128) of the destination YMM register are zeroed. The count operand can be either an XMM register or a 128-bit memory loca-tion or an 8-bit immediate. If the count operand is a memory address, 128 bits are loaded but the upper 64 bits are ignored.
VEX.256 encoded version: The destination and first source operands are YMM registers. The count operand can be either an XMM register or a 128-bit memory location or an 8-bit immediate.
Note: For shifts with an immediate count (VEX.128.66.0F 71-73 /6), VEX.vvvv encodes the destination register, and VEX.B + ModRM.r/m encodes the source register. VEX.L must be 0, otherwise instructions will #UD.
PSLLW (with 64-bit operand)
IF (COUNT > 15) THEN DEST[64:0] ← 0000000000000000H; ELSE DEST[15:0] ← ZeroExtend(DEST[15:0] << COUNT); (* Repeat shift operation for 2nd and 3rd words *) DEST[63:48] ← ZeroExtend(DEST[63:48] << COUNT); FI;
PSLLD (with 64-bit operand)
IF (COUNT > 31) THEN DEST[64:0] ← 0000000000000000H; ELSE DEST[31:0] ← ZeroExtend(DEST[31:0] << COUNT); DEST[63:32] ← ZeroExtend(DEST[63:32] << COUNT); FI;
PSLLQ (with 64-bit operand)
IF (COUNT > 63) THEN DEST[64:0] ← 0000000000000000H; ELSE DEST ← ZeroExtend(DEST << COUNT); FI;
PSLLW (with 128-bit operand)
COUNT ← COUNT_SOURCE[63:0]; IF (COUNT > 15) THEN DEST[128:0] ← 00000000000000000000000000000000H; ELSE DEST[15:0] ← ZeroExtend(DEST[15:0] << COUNT); (* Repeat shift operation for 2nd through 7th words *) DEST[127:112] ← ZeroExtend(DEST[127:112] << COUNT); FI;
PSLLD (with 128-bit operand)
COUNT ← COUNT_SOURCE[63:0]; IF (COUNT > 31) THEN DEST[128:0] ← 00000000000000000000000000000000H; ELSE DEST[31:0] ← ZeroExtend(DEST[31:0] << COUNT); (* Repeat shift operation for 2nd and 3rd doublewords *) DEST[127:96] ← ZeroExtend(DEST[127:96] << COUNT); FI;
PSLLQ (with 128-bit operand)
COUNT ← COUNT_SOURCE[63:0]; IF (COUNT > 63) THEN DEST[128:0] ← 00000000000000000000000000000000H; ELSE DEST[63:0] ← ZeroExtend(DEST[63:0] << COUNT); DEST[127:64] ← ZeroExtend(DEST[127:64] << COUNT); FI;
PSLLW (xmm, xmm, xmm/m128)
DEST[127:0] ← LOGICAL_LEFT_SHIFT_WORDS(DEST, SRC) DEST[VLMAX-1:128] (Unmodified)
PSLLW (xmm, imm8)
DEST[127:0] ← LOGICAL_LEFT_SHIFT_WORDS(DEST, imm8) DEST[VLMAX-1:128] (Unmodified)
VPSLLD (xmm, xmm, xmm/m128)
DEST[127:0] ← LOGICAL_LEFT_SHIFT_DWORDS(SRC1, SRC2) DEST[VLMAX-1:128] ← 0
VPSLLD (xmm, imm8)
DEST[127:0] ← LOGICAL_LEFT_SHIFT_DWORDS(SRC1, imm8) DEST[VLMAX-1:128] ← 0
PSLLD (xmm, xmm, xmm/m128)
DEST[127:0] ← LOGICAL_LEFT_SHIFT_DWORDS(DEST, SRC) DEST[VLMAX-1:128] (Unmodified)
PSLLD (xmm, imm8)
DEST[127:0] ← LOGICAL_LEFT_SHIFT_DWORDS(DEST, imm8) DEST[VLMAX-1:128] (Unmodified)
VPSLLQ (xmm, xmm, xmm/m128)
DEST[127:0] ← LOGICAL_LEFT_SHIFT_QWORDS(SRC1, SRC2) DEST[VLMAX-1:128] ← 0
VPSLLQ (xmm, imm8)
DEST[127:0] ← LOGICAL_LEFT_SHIFT_QWORDS(SRC1, imm8) DEST[VLMAX-1:128] ← 0
PSLLQ (xmm, xmm, xmm/m128)
DEST[127:0] ← LOGICAL_LEFT_SHIFT_QWORDS(DEST, SRC) DEST[VLMAX-1:128] (Unmodified)
PSLLQ (xmm, imm8)
DEST[127:0] ← LOGICAL_LEFT_SHIFT_QWORDS(DEST, imm8) DEST[VLMAX-1:128] (Unmodified)
VPSLLW (xmm, xmm, xmm/m128)
DEST[127:0] ← LOGICAL_LEFT_SHIFT_WORDS(SRC1, SRC2) DEST[VLMAX-1:128] ← 0
VPSLLW (xmm, imm8)
DEST[127:0] ← LOGICAL_LEFT_SHIFT_WORDS(SRC1, imm8) DEST[VLMAX-1:128] ← 0
PSLLW (xmm, xmm, xmm/m128)
DEST[127:0] ← LOGICAL_LEFT_SHIFT_WORDS(DEST, SRC) DEST[VLMAX-1:128] (Unmodified)
PSLLW (xmm, imm8)
DEST[127:0] ← LOGICAL_LEFT_SHIFT_WORDS(DEST, imm8) DEST[VLMAX-1:128] (Unmodified)
VPSLLD (xmm, xmm, xmm/m128)
DEST[127:0] ← LOGICAL_LEFT_SHIFT_DWORDS(SRC1, SRC2) DEST[VLMAX-1:128] ← 0
VPSLLD (xmm, imm8)
DEST[127:0] ← LOGICAL_LEFT_SHIFT_DWORDS(SRC1, imm8) DEST[VLMAX-1:128] ← 0
VPSLLW (ymm, ymm, xmm/m128)
DEST[255:0] ← LOGICAL_LEFT_SHIFT_WORDS_256b(SRC1, SRC2)
VPSLLW (ymm, imm8)
DEST[255:0] ← LOGICAL_LEFT_SHIFT_WORD_256bS(SRC1, imm8)
VPSLLD (ymm, ymm, xmm/m128)
DEST[255:0] ← LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC1, SRC2)
VPSLLD (ymm, imm8)
DEST[127:0] ← LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC1, imm8)
VPSLLQ (ymm, ymm, xmm/m128)
DEST[255:0] ← LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC1, SRC2)
VPSLLQ (ymm, imm8)
DEST[255:0] ← LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC1, imm8)
PSLLW:
__m64 _mm_slli_pi16 (__m64 m, int count)
PSLLW:
__m64 _mm_sll_pi16(__m64 m, __m64 count)
(V)PSLLW:
__m128i _mm_slli_pi16(__m64 m, int count)
(V)PSLLW:
__m128i _mm_slli_pi16(__m128i m, __m128i count)
VPSLLW:
__m256i _mm256_slli_epi16 (__m256i m, int count)
VPSLLW:
__m256i _mm256_sll_epi16 (__m256i m, __m128i count)
PSLLD:
__m64 _mm_slli_pi32(__m64 m, int count)
PSLLD:
__m64 _mm_sll_pi32(__m64 m, __m64 count)
(V)PSLLD:
__m128i _mm_slli_epi32(__m128i m, int count)
(V)PSLLD:
__m128i _mm_sll_epi32(__m128i m, __m128i count)
VPSLLD:
__m256i _mm256_slli_epi32 (__m256i m, int count)
VPSLLD:
__m256i _mm256_sll_epi32 (__m256i m, __m128i count)
PSLLQ:
__m64 _mm_slli_si64(__m64 m, int count)
PSLLQ:
__m64 _mm_sll_si64(__m64 m, __m64 count)
(V)PSLLQ:
__m128i _mm_slli_epi64(__m128i m, int count)
(V)PSLLQ:
__m128i _mm_sll_epi64(__m128i m, __m128i count)
VPSLLQ:
__m256i _mm256_slli_epi64 (__m256i m, int count)
VPSLLQ:
__m256i _mm256_sll_epi64 (__m256i m, __m128i count)
None.
None.
See Exceptions Type 4 and 7 for non-VEX-encoded instructions; additionally
#UD | If VEX.L = 1. |