Opcode/Instruction | Op/En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
---|---|---|---|---|
F3 0F 70 /r ib PSHUFHW xmm1, xmm2/m128, imm8 |
RMI | V/V | SSE2 | Shuffle the high words in xmm2/m128 based on the encoding in imm8 and store the result in xmm1. |
VEX.128.F3.0F.WIG 70 /r ib VPSHUFHW xmm1, xmm2/m128, imm8 |
RMI | V/V | AVX | Shuffle the high words in xmm2/m128 based on the encoding in imm8 and store the result in xmm1. |
VEX.256.F3.0F.WIG 70 /r ib VPSHUFHW ymm1, ymm2/m256, imm8 |
RMI | V/V | AVX2 | Shuffle the high words in ymm2/m256 based on the encoding in imm8 and store the result in ymm1. |
Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
RMI | ModRM:reg (w) | ModRM:r/m (r) | imm8 | NA |
Copies words from the high quadword of a 128-bit lane of the source operand and inserts them in the high quad-word of the destination operand at word locations (of the respective lane) selected with the immediate operand. This 256-bit operation is similar to the in-lane operation used by the 256-bit VPSHUFD instruction, which is illus-trated in Figure 4-12. For 128-bit operation, only the low 128-bit lane is operative. Each 2-bit field in the immediate operand selects the contents of one word location in the high quadword of the destination operand. The binary encodings of the immediate operand fields select words (0, 1, 2 or 3, 4) from the high quadword of the source operand to be copied to the destination operand. The low quadword of the source operand is copied to the low quadword of the destination operand, for each 128-bit lane.
Note that this instruction permits a word in the high quadword of the source operand to be copied to more than one word location in the high quadword of the destination operand.
In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The destination operand is an XMM register. The source operand can be an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: The destination operand is an XMM register. The source operand can be an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed. VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the instruction will #UD.
VEX.256 encoded version: The destination operand is an YMM register. The source operand can be an YMM register or a 256-bit memory location.
Note: In VEX encoded versions VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
PSHUFHW (128-bit Legacy SSE version)
DEST[63:0] ← SRC[63:0] DEST[79:64] ← (SRC >> (imm[1:0] *16))[79:64] DEST[95:80] ← (SRC >> (imm[3:2] * 16))[79:64] DEST[111:96] ← (SRC >> (imm[5:4] * 16))[79:64] DEST[127:112] ← (SRC >> (imm[7:6] * 16))[79:64] DEST[VLMAX-1:128] (Unmodified)
VPSHUFHW (VEX.128 encoded version)
DEST[63:0] ← SRC1[63:0] DEST[79:64] ← (SRC1 >> (imm[1:0] *16))[79:64] DEST[95:80] ← (SRC1 >> (imm[3:2] * 16))[79:64] DEST[111:96] ← (SRC1 >> (imm[5:4] * 16))[79:64] DEST[127:112] ← (SRC1 >> (imm[7:6] * 16))[79:64] DEST[VLMAX-1:128] ← 0
VPSHUFHW (VEX.256 encoded version)
DEST[63:0] ← SRC1[63:0] DEST[79:64] ← (SRC1 >> (imm[1:0] *16))[79:64] DEST[95:80] ← (SRC1 >> (imm[3:2] * 16))[79:64] DEST[111:96] ← (SRC1 >> (imm[5:4] * 16))[79:64] DEST[127:112] ← (SRC1 >> (imm[7:6] * 16))[79:64] DEST[191:128] ← SRC1[191:128] DEST[207192] ← (SRC1 >> (imm[1:0] *16))[207:192] DEST[223:208] ← (SRC1 >> (imm[3:2] * 16))[207:192] DEST[239:224] ← (SRC1 >> (imm[5:4] * 16))[207:192] DEST[255:240] ← (SRC1 >> (imm[7:6] * 16))[207:192]
(V)PSHUFHW:
__m128i _mm_shufflehi_epi16(__m128i a, int n)
VPSHUFHW:
__m256i _mm256_shufflehi_epi16(__m256i a, const int n)
None.
None.
See Exceptions Type 4; additionally
#UD |
If VEX.L = 1. If VEX.vvvv ≠ 1111B. |