PMULLW—Multiply Packed Signed Integers and Store Low Result

Opcode/Instruction Op/En 64/32 bit Mode Support CPUID Feature Flag Description

0F D5 /r1

PMULLW mm, mm/m64

RM V/V MMX Multiply the packed signed word integers in mm1 register and mm2/m64, and store the low 16 bits of the results in mm1.

66 0F D5 /r

PMULLW xmm1, xmm2/m128

RM V/V SSE2 Multiply the packed signed word integers in xmm1 and xmm2/m128, and store the low 16 bits of the results in xmm1.

VEX.NDS.128.66.0F.WIG D5 /r

VPMULLW xmm1, xmm2, xmm3/m128

RVM V/V AVX Multiply the packed dword signed integers in xmm2 and xmm3/m128 and store the low 32 bits of each product in xmm1.

VEX.NDS.256.66.0F.WIG D5 /r

VPMULLW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Multiply the packed signed word integers in ymm2 and ymm3/m256, and store the low 16 bits of the results in ymm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

Description

Performs a SIMD signed multiply of the packed signed word integers in the destination operand (first operand) and the source operand (second operand), and stores the low 16 bits of each intermediate 32-bit result in the destina-tion operand. (Figure 4-8 shows this operation when using 64-bit operands.)

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15).

Legacy SSE version: The source operand can be an MMX technology register or a 64-bit memory location. The destination operand is an MMX technology register.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destina-tion register remain unchanged.

VEX.128 encoded version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed. VEX.L must be 0, otherwise the instruction will #UD.

VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The first source and destination operands are YMM registers.

SRC DEST TEMP DEST X3 X2 X1 Z2[15:0] Z1[15:0] Z3[15:0] X0 Z0[15:0] Z2 = X2 ∗ Y2 Z3 = X3 ∗ Y3 Z1 = X1 ∗ Y1 Z0 = X0 ∗ Y0 Y3 Y2 Y1 Y0

Figure 4-9. PMULLU Instruction Operation Using 64-bit Operands

Operation

PMULLW (with 64-bit operands)

    TEMP0[31:0] ←
                         DEST[15:0] ∗ SRC[15:0]; (* Signed multiplication *)
    TEMP1[31:0] ←
                         DEST[31:16] ∗ SRC[31:16];
    TEMP2[31:0] ←
                         DEST[47:32] ∗ SRC[47:32];
    TEMP3[31:0] ←
                         DEST[63:48] ∗ SRC[63:48];
    DEST[15:0] ←
                         TEMP0[15:0];
    DEST[31:16] ←
                         TEMP1[15:0];
    DEST[47:32] ←
                         TEMP2[15:0];
    DEST[63:48] ←
                         TEMP3[15:0];

PMULLW (with 128-bit operands)

    TEMP0[31:0] ←
                         DEST[15:0] ∗ SRC[15:0]; (* Signed multiplication *)
    TEMP1[31:0] ←
                         DEST[31:16] ∗ SRC[31:16];
    TEMP2[31:0] ←
                         DEST[47:32] ∗ SRC[47:32];
    TEMP3[31:0] ←
                         DEST[63:48] ∗ SRC[63:48];
    TEMP4[31:0] ←
                         DEST[79:64] ∗ SRC[79:64];
    TEMP5[31:0] ←
                         DEST[95:80] ∗ SRC[95:80];
    TEMP6[31:0] ←
                         DEST[111:96] ∗ SRC[111:96];
    TEMP7[31:0] ←
                         DEST[127:112] ∗ SRC[127:112];
    DEST[15:0] ←
                         TEMP0[15:0];
    DEST[31:16] ←
                         TEMP1[15:0];
    DEST[47:32] ←
                         TEMP2[15:0];
    DEST[63:48] ←
                         TEMP3[15:0];
    DEST[79:64] ←
                         TEMP4[15:0];
    DEST[95:80] ←
                         TEMP5[15:0];
    DEST[111:96] ←  TEMP6[15:0];
    DEST[127:112] ← TEMP7[15:0];

VPMULLW (VEX.128 encoded version)

Temp0[31:0] ← SRC1[15:0] * SRC2[15:0]
Temp1[31:0] ← SRC1[31:16] * SRC2[31:16]
Temp2[31:0] ← SRC1[47:32] * SRC2[47:32]
Temp3[31:0] ← SRC1[63:48] * SRC2[63:48]
Temp4[31:0] ← SRC1[79:64] * SRC2[79:64]
Temp5[31:0] ← SRC1[95:80] * SRC2[95:80]
Temp6[31:0] ← SRC1[111:96] * SRC2[111:96]
Temp7[31:0] ← SRC1[127:112] * SRC2[127:112]
DEST[15:0] ← Temp0[15:0]
DEST[31:16] ← Temp1[15:0]
DEST[47:32] ← Temp2[15:0]
DEST[63:48] ← Temp3[15:0]
DEST[79:64] ← Temp4[15:0]
DEST[95:80] ← Temp5[15:0]
DEST[111:96] ← Temp6[15:0]
DEST[127:112] ← Temp7[15:0]
DEST[VLMAX-1:128] ← 0

VPMULLD (VEX.256 encoded version)

Temp0[63:0] ← SRC1[31:0] * SRC2[31:0]
Temp1[63:0] ← SRC1[63:32] * SRC2[63:32]
Temp2[63:0] ← SRC1[95:64] * SRC2[95:64]
Temp3[63:0] ← SRC1[127:96] * SRC2[127:96]
Temp4[63:0] ← SRC1[159:128] * SRC2[159:128]
Temp5[63:0] ← SRC1[191:160] * SRC2[191:160]
Temp6[63:0] ← SRC1[223:192] * SRC2[223:192]
Temp7[63:0] ← SRC1[255:224] * SRC2[255:224]
DEST[31:0] ← Temp0[31:0]
DEST[63:32] ← Temp1[31:0]
DEST[95:64] ← Temp2[31:0]
DEST[127:96] ← Temp3[31:0]
DEST[159:128] ← Temp4[31:0]
DEST[191:160] ← Temp5[31:0]
DEST[223:192] ← Temp6[31:0]
DEST[255:224] ← Temp7[31:0]

Intel C/C++ Compiler Intrinsic Equivalent

PMULLW:

__m64 _mm_mullo_pi16(__m64 m1, __m64 m2)

(V)PMULLW:

__m128i _mm_mullo_epi16 ( __m128i a, __m128i b)

VPMULLW:

__m256i _mm256_mullo_epi16 ( __m256i a, __m256i b);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally

#UD If VEX.L = 1.