Opcode/Instruction | Op/En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
---|---|---|---|---|
0F 38 0B /r1 PMULHRSW mm1, mm2/m64 |
RM | V/V | SSSE3 | Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to mm1. |
66 0F 38 0B /r PMULHRSW xmm1, xmm2/m128 |
RM | V/V | SSSE3 | Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to xmm1. |
VEX.NDS.128.66.0F38.WIG 0B /r VPMULHRSW xmm1, xmm2, xmm3/m128 |
RVM | V/V | AVX | Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to xmm1. |
VEX.NDS.256.66.0F38.WIG 0B /r VPMULHRSW ymm1, ymm2, ymm3/m256 |
RVM | V/V | AVX2 | Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to ymm1. |
NOTES:
1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
RM | ModRM:reg (r, w) | ModRM:r/m (r) | NA | NA |
RVM | ModRM:reg (w) | VEX.vvvv (r) | ModRM:r/m (r) | NA |
PMULHRSW multiplies vertically each signed 16-bit integer from the destination operand (first operand) with the corresponding signed 16-bit integer of the source operand (second operand), producing intermediate, signed 32-bit integers. Each intermediate 32-bit integer is truncated to the 18 most significant bits. Rounding is always performed by adding 1 to the least significant bit of the 18-bit intermediate result. The final result is obtained by selecting the 16 bits immediately to the right of the most significant bit of each 18-bit intermediate result and packed to the destination operand.
When the source operand is a 128-bit memory operand, the operand must be aligned on a 16-byte boundary or a general-protection exception (#GP) will be generated.
In 64-bit mode, use the REX prefix to access additional registers.
Legacy SSE version: Both operands can be MMX registers. The second source operand is an MMX register or a 64-bit memory location.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destina-tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed. VEX.L must be 0, otherwise the instruction will #UD.
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The first source and destination operands are YMM registers.
PMULHRSW (with 64-bit operands)
temp0[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) >>14) + 1; temp1[31:0] = INT32 ((DEST[31:16] * SRC[31:16]) >>14) + 1; temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) >> 14) + 1; temp3[31:0] = INT32 ((DEST[63:48] * SRc[63:48]) >> 14) + 1; DEST[15:0] = temp0[16:1]; DEST[31:16] = temp1[16:1]; DEST[47:32] = temp2[16:1]; DEST[63:48] = temp3[16:1];
PMULHRSW (with 128-bit operand)
temp0[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) >>14) + 1; temp1[31:0] = INT32 ((DEST[31:16] * SRC[31:16]) >>14) + 1; temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) >>14) + 1; temp3[31:0] = INT32 ((DEST[63:48] * SRC[63:48]) >>14) + 1; temp4[31:0] = INT32 ((DEST[79:64] * SRC[79:64]) >>14) + 1; temp5[31:0] = INT32 ((DEST[95:80] * SRC[95:80]) >>14) + 1; temp6[31:0] = INT32 ((DEST[111:96] * SRC[111:96]) >>14) + 1; temp7[31:0] = INT32 ((DEST[127:112] * SRC[127:112) >>14) + 1; DEST[15:0] = temp0[16:1]; DEST[31:16] = temp1[16:1]; DEST[47:32] = temp2[16:1]; DEST[63:48] = temp3[16:1]; DEST[79:64] = temp4[16:1]; DEST[95:80] = temp5[16:1]; DEST[111:96] = temp6[16:1]; DEST[127:112] = temp7[16:1];
VPMULHRSW (VEX.128 encoded version)
temp0[31:0] ← INT32 ((SRC1[15:0] * SRC2[15:0]) >>14) + 1 temp1[31:0] ← INT32 ((SRC1[31:16] * SRC2[31:16]) >>14) + 1 temp2[31:0] ← INT32 ((SRC1[47:32] * SRC2[47:32]) >>14) + 1 temp3[31:0] ← INT32 ((SRC1[63:48] * SRC2[63:48]) >>14) + 1 temp4[31:0] ← INT32 ((SRC1[79:64] * SRC2[79:64]) >>14) + 1 temp5[31:0] ← INT32 ((SRC1[95:80] * SRC2[95:80]) >>14) + 1 temp6[31:0] ← INT32 ((SRC1[111:96] * SRC2[111:96]) >>14) + 1 temp7[31:0] ← INT32 ((SRC1[127:112] * SRC2[127:112) >>14) + 1 DEST[15:0] ← temp0[16:1] DEST[31:16] ← temp1[16:1] DEST[47:32] ← temp2[16:1] DEST[63:48] ← temp3[16:1] DEST[79:64] ← temp4[16:1] DEST[95:80] ← temp5[16:1] DEST[111:96] ← temp6[16:1] DEST[127:112] ← temp7[16:1] DEST[VLMAX-1:128] ← 0
VPMULHRSW (VEX.256 encoded version)
temp0[31:0] ← INT32 ((SRC1[15:0] * SRC2[15:0]) >>14) + 1 temp1[31:0] ← INT32 ((SRC1[31:16] * SRC2[31:16]) >>14) + 1 temp2[31:0] ← INT32 ((SRC1[47:32] * SRC2[47:32]) >>14) + 1 temp3[31:0] ← INT32 ((SRC1[63:48] * SRC2[63:48]) >>14) + 1 temp4[31:0] ← INT32 ((SRC1[79:64] * SRC2[79:64]) >>14) + 1 temp5[31:0] ← INT32 ((SRC1[95:80] * SRC2[95:80]) >>14) + 1 temp6[31:0] ← INT32 ((SRC1[111:96] * SRC2[111:96]) >>14) + 1 temp7[31:0] ← INT32 ((SRC1[127:112] * SRC2[127:112) >>14) + 1 temp8[31:0] ← INT32 ((SRC1[143:128] * SRC2[143:128]) >>14) + 1 temp9[31:0] ← INT32 ((SRC1[159:144] * SRC2[159:144]) >>14) + 1 temp10[31:0] ← INT32 ((SRC1[75:160] * SRC2[175:160]) >>14) + 1 temp11[31:0] ← INT32 ((SRC1[191:176] * SRC2[191:176]) >>14) + 1 temp12[31:0] ← INT32 ((SRC1[207:192] * SRC2[207:192]) >>14) + 1 temp13[31:0] ← INT32 ((SRC1[223:208] * SRC2[223:208]) >>14) + 1 temp14[31:0] ← INT32 ((SRC1[239:224] * SRC2[239:224]) >>14) + 1 temp15[31:0] ← INT32 ((SRC1[255:240] * SRC2[255:240) >>14) + 1
PMULHRSW:
__m64 _mm_mulhrs_pi16 (__m64 a, __m64 b)
(V)PMULHRSW:
__m128i _mm_mulhrs_epi16 (__m128i a, __m128i b)
VPMULHRSW:
__m256i _mm256_mulhrs_epi16 (__m256i a, __m256i b)
None.
See Exceptions Type 4; additionally
#UD | If VEX.L = 1. |