Opcode/Instruction | Op/En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
---|---|---|---|---|
0F 3A 0F /r ib1 PALIGNR mm1, mm2/m64, imm8 |
RMI | V/V | SSSE3 | Concatenate destination and source operands, extract byte-aligned result shifted to the right by constant value in imm8 into mm1. |
66 0F 3A 0F /r ib PALIGNR xmm1, xmm2/m128, imm8 |
RMI | V/V | SSSE3 | Concatenate destination and source operands, extract byte-aligned result shifted to the right by constant value in imm8 into xmm1. |
VEX.NDS.128.66.0F3A.WIG 0F /r ib VPALIGNR xmm1, xmm2, xmm3/m128, imm8 |
RVMI | V/V | AVX | Concatenate xmm2 and xmm3/m128, extract byte aligned result shifted to the right by constant value in imm8 and result is stored in xmm1. |
VEX.NDS.256.66.0F3A.WIG 0F /r ib VPALIGNR ymm1, ymm2, ymm3/m256, imm8 |
RVMI | V/V | AVX2 | Concatenate pairs of 16 bytes in ymm2 and ymm3/m256 into 32-byte intermediate result, extract byte-aligned, 16-byte result shifted to the right by constant values in imm8 from each intermediate result, and two 16-byte results are stored in ymm1. |
NOTES:
1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
RMI | ModRM:reg (r, w) | ModRM:r/m (r) | imm8 | NA |
RVMI | ModRM:reg (w) | VEX.vvvv (r) | ModRM:r/m (r) | imm8 |
(V)PALIGNR concatenates the destination operand (the first operand) and the source operand (the second operand) into an intermediate composite, shifts the composite at byte granularity to the right by a constant imme-diate, and extracts the right-aligned result into the destination. The first and the second operands can be an MMX, XMM or a YMM register. The immediate value is considered unsigned. Immediate shift counts larger than the 2L (i.e. 32 for 128-bit operands, or 16 for 64-bit operands) produce a zero result. Both operands can be MMX regis-ters, XMM registers or YMM registers. When the source operand is a 128-bit memory operand, the operand must be aligned on a 16-byte boundary or a general-protection exception (#GP) will be generated.
In 64-bit mode, use the REX prefix to access additional registers.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register and contains two 16-byte blocks. The second source operand is a YMM register or a 256-bit memory location containing two 16-byte block. The destination operand is a YMM register and contain two 16-byte results. The imm8[7:0] is the common shift count used for the two lower 16-byte block sources and the two upper 16-byte block sources. The low 16-byte block of the two source
operands produce the low 16-byte result of the destination operand, the high 16-byte block of the two source oper-ands produce the high 16-byte result of the destination operand.
Concatenation is done with 128-bit data in the first and second source operand for both 128-bit and 256-bit instructions. The high 128-bits of the intermediate composite 256-bit result came from the 128-bit data from the first source operand; the low 128-bits of the intermediate result came from the 128-bit data of the second source operand.
Note: VEX.L must be 0, otherwise the instruction will #UD.
0
127
0
127
SRC1
SRC2
Imm8[7:0]*8
255
128
128
255
SRC1
SRC2
Imm8[7:0]*8
127
0
128
255
DEST
DEST
PALIGNR (with 64-bit operands)
temp1[127:0] = CONCATENATE(DEST,SRC)>>(imm8*8) DEST[63:0] = temp1[63:0]
PALIGNR (with 128-bit operands)
temp1[255:0] ← ((DEST[127:0] << 128) OR SRC[127:0])>>(imm8*8); DEST[127:0] ← temp1[127:0] DEST[VLMAX-1:128] (Unmodified)
VPALIGNR (VEX.128 encoded version)
temp1[255:0] ← ((SRC1[127:0] << 128) OR SRC2[127:0])>>(imm8*8); DEST[127:0] ← temp1[127:0] DEST[VLMAX-1:128] ← 0
VPALIGNR (VEX.256 encoded version)
temp1[255:0] ← ((SRC1[127:0] << 128) OR SRC2[127:0])>>(imm8[7:0]*8); DEST[127:0] ← temp1[127:0] temp1[255:0] ← ((SRC1[255:128] << 128) OR SRC2[255:128])>>(imm8[7:0]*8); DEST[255:128] ← temp1[127:0]
PALIGNR:
__m64 _mm_alignr_pi8 (__m64 a, __m64 b, int n)
(V)PALIGNR:
__m128i _mm_alignr_epi8 (__m128i a, __m128i b, int n)
VPALIGNR:
__m256i _mm256_alignr_epi8 (__m256i a, __m256i b, const int n)
None.
See Exceptions Type 4; additionally
#UD | If VEX.L = 1. |