Opcode/Instruction | Op/En | 64/32-bit Mode | CPUID Feature Flag | Description |
---|---|---|---|---|
F3 0F 5B /r CVTTPS2DQ xmm1, xmm2/m128 |
RM | V/V | SSE2 | Convert four single-precision floating-point values from xmm2/m128 to four signed doubleword integers in xmm1 using truncation. |
VEX.128.F3.0F.WIG 5B /r VCVTTPS2DQ xmm1, xmm2/m128 |
RM | V/V | AVX | Convert four packed single precision floating-point values from xmm2/mem to four packed signed doubleword values in xmm1 using truncation. |
VEX.256.F3.0F.WIG 5B /r VCVTTPS2DQ ymm1, ymm2/m256 |
RM | V/V | AVX | Convert eight packed single precision floating-point values from ymm2/mem to eight packed signed doubleword values in ymm1 using truncation. |
Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
RM | ModRM:reg (w) | ModRM:r/m (r) | NA | NA |
Converts four or eight packed single-precision floating-point values in the source operand to four or eight signed doubleword integers in the destination operand.
When a conversion is inexact, a truncated (round toward zero) value is returned.If a converted result is larger than the maximum signed doubleword integer, the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value (80000000H) is returned.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination operation is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified.
VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination operation is a YMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination operation is a YMM register.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
CVTTPS2DQ (128-bit Legacy SSE version)
DEST[31:0] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0]) DEST[63:32] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32]) DEST[95:64] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95:64]) DEST[127:96] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[127:96]) DEST[VLMAX-1:128] (unmodified)
VCVTTPS2DQ (VEX.128 encoded version)
DEST[31:0] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0]) DEST[63:32] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32]) DEST[95:64] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95:64]) DEST[127:96] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[127:96]) DEST[VLMAX-1:128] ← 0
VCVTTPS2DQ (VEX.256 encoded version)
DEST[31:0] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0]) DEST[63:32] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32]) DEST[95:64] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95:64]) DEST[127:96] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[127:96) DEST[159:128] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[159:128]) DEST[191:160] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[191:160]) DEST[223:192] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[223:192]) DEST[255:224] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[255:224])
CVTTPS2DQ:
__m128i _mm_cvttps_epi32(__m128 a)
VCVTTPS2DQ:
__m256i _mm256_cvttps_epi32 (__m256 a)
Invalid, Precision.
See Exceptions Type 2; additionally
#UD | If VEX.vvvv ≠ 1111B. |