Opcode/Instruction | Op/En | 64/32-bit Mode | CPUID Feature Flag | Description |
---|---|---|---|---|
F3 0F C2 /r ib CMPSS xmm1, xmm2/m32, imm8 |
RMI | V/V | SSE | Compare low single-precision floating-point value in xmm2/m32 and xmm1 using imm8 as comparison predicate. |
VEX.NDS.LIG.F3.0F.WIG C2 /r ib VCMPSS xmm1, xmm2, xmm3/m32, imm8 |
RVMI | V/V | AVX | Compare low single precision floating-point value in xmm3/m32 and xmm2 using bits 4:0 of imm8 as comparison predicate. |
Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
RMI | ModRM:reg (r, w) | ModRM:r/m (r) | imm8 | NA |
RVMI | ModRM:reg (w) | VEX.vvvv (r) | ModRM:r/m (r) | imm8 |
Compares the low single-precision floating-point values in the source operand (second operand) and the destina-tion operand (first operand) and returns the results of the comparison to the destination operand. The comparison predicate operand (third operand) specifies the type of comparison performed. The comparison result is a double-word mask of all 1s (comparison true) or all 0s (comparison false). The sign of zero is ignored for comparisons, so that –0.0 is equal to +0.0.
128-bit Legacy SSE version: The first source and destination operand (first operand) is an XMM register. The second source operand (second operand) can be an XMM register or 64-bit memory location. The comparison pred-icate operand is an 8-bit immediate, bits 2:0 of the immediate define the type of comparison to be performed (see Table 3-7). Bits 7:3 of the immediate is reserved. Bits (VLMAX-1:32) of the corresponding YMM destination register remain unchanged.
The unordered relationship is true when at least one of the two source operands being compared is a NaN; the ordered relationship is true when neither source operand is a NaN
A subsequent computational instruction that uses the mask result in the destination operand as an input operand will not generate a fault, since a mask of all 0s corresponds to a floating-point value of +0.0 and a mask of all 1s corresponds to a QNaN.
Note that processors with “CPUID.1H:ECX.AVX =0” do not implement the “greater-than”, “greater-than-or-equal”, “not-greater than”, and “not-greater-than-or-equal relations” predicates. These comparisons can be made either by using the inverse relationship (that is, use the “not-less-than-or-equal” to make a “greater-than” comparison) or by using software emulation. When using software emulation, the program must swap the operands (copying registers when necessary to protect the data that will now be in the destination operand), and then perform the compare using a different predicate. The predicate to be used for these emulations is listed in Table 3-7 under the heading Emulation.
Compilers and assemblers may implement the following two-operand pseudo-ops in addition to the three-operand CMPSS instruction, for processors with “CPUID.1H:ECX.AVX =0”. See Table 3-15. Compiler should treat reserved Imm8 values as illegal syntax.
Pseudo-Op | CMPSS Implementation |
---|---|
CMPEQSS xmm1, xmm2 | CMPSS xmm1, xmm2, 0 |
CMPLTSS xmm1, xmm2 | CMPSS xmm1, xmm2, 1 |
CMPLESS xmm1, xmm2 | CMPSS xmm1, xmm2, 2 |
CMPUNORDSS xmm1, xmm2 | CMPSS xmm1, xmm2, 3 |
CMPNEQSS xmm1, xmm2 | CMPSS xmm1, xmm2, 4 |
CMPNLTSS xmm1, xmm2 | CMPSS xmm1, xmm2, 5 |
CMPNLESS xmm1, xmm2 | CMPSS xmm1, xmm2, 6 |
CMPORDSS xmm1, xmm2 | CMPSS xmm1, xmm2, 7 |
The greater-than relations not implemented in the processor require more than one instruction to emulate in soft-ware and therefore should not be implemented as pseudo-ops. (For these, the programmer should reverse the operands of the corresponding less than relations and use move instructions to ensure that the mask is moved to the correct destination register and that the source operand is left intact.)
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
Enhanced Comparison Predicate for VEX-Encoded VCMPSD
VEX.128 encoded version: The first source operand (second operand) is an XMM register. The second source operand (third operand) can be an XMM register or a 32-bit memory location. Bits (VLMAX-1:128) of the destina-tion YMM register are zeroed. The comparison predicate operand is an 8-bit immediate:
Processors with “CPUID.1H:ECX.AVX =1” implement the full complement of 32 predicates shown in Table 3-9, soft-ware emulation is no longer needed. Compilers and assemblers may implement the following three-operand pseudo-ops in addition to the four-operand VCMPSS instruction. See Table 3-16, where the notations of reg1 reg2, and reg3 represent either XMM registers or YMM registers. Compiler should treat reserved Imm8 values as illegal syntax. Alternately, intrinsics can map the pseudo-ops to pre-defined constants to support a simpler intrinsic inter-face.
:
Pseudo-Op | CMPSS Implementation |
---|---|
VCMPEQSS reg1, reg2, reg3 | VCMPSS reg1, reg2, reg3, 0 |
VCMPLTSS reg1, reg2, reg3 | VCMPSS reg1, reg2, reg3, 1 |
VCMPLESS reg1, reg2, reg3 | VCMPSS reg1, reg2, reg3, 2 |
VCMPUNORDSS reg1, reg2, reg3 | VCMPSS reg1, reg2, reg3, 3 |
VCMPNEQSS reg1, reg2, reg3 | VCMPSS reg1, reg2, reg3, 4 |
VCMPNLTSS reg1, reg2, reg3 | VCMPSS reg1, reg2, reg3, 5 |
VCMPNLESS reg1, reg2, reg3 | VCMPSS reg1, reg2, reg3, 6 |
VCMPORDSS reg1, reg2, reg3 | VCMPSS reg1, reg2, reg3, 7 |
VCMPEQ_UQSS reg1, reg2, reg3 | VCMPSS reg1, reg2, reg3, 8 |
VCMPNGESS reg1, reg2, reg3 | VCMPSS reg1, reg2, reg3, 9 |
VCMPNGTSS reg1, reg2, reg3 | VCMPSS reg1, reg2, reg3, 0AH |
VCMPFALSESS reg1, reg2, reg3 | VCMPSS reg1, reg2, reg3, 0BH |
VCMPNEQ_OQSS reg1, reg2, reg3 | VCMPSS reg1, reg2, reg3, 0CH |
VCMPGESS reg1, reg2, reg3 | VCMPSS reg1, reg2, reg3, 0DH |
VCMPGTSS reg1, reg2, reg3 | VCMPSS reg1, reg2, reg3, 0EH |
Pseudo-Op | CMPSS Implementation |
---|---|
VCMPTRUESS reg1, reg2, reg3 | VCMPSS reg1, reg2, reg3, 0FH |
VCMPEQ_OSSS reg1, reg2, reg3 | VCMPSS reg1, reg2, reg3, 10H |
VCMPLT_OQSS reg1, reg2, reg3 | VCMPSS reg1, reg2, reg3, 11H |
VCMPLE_OQSS reg1, reg2, reg3 | VCMPSS reg1, reg2, reg3, 12H |
VCMPUNORD_SSS reg1, reg2, reg3 | VCMPSS reg1, reg2, reg3, 13H |
VCMPNEQ_USSS reg1, reg2, reg3 | VCMPSS reg1, reg2, reg3, 14H |
VCMPNLT_UQSS reg1, reg2, reg3 | VCMPSS reg1, reg2, reg3, 15H |
VCMPNLE_UQSS reg1, reg2, reg3 | VCMPSS reg1, reg2, reg3, 16H |
VCMPORD_SSS reg1, reg2, reg3 | VCMPSS reg1, reg2, reg3, 17H |
VCMPEQ_USSS reg1, reg2, reg3 | VCMPSS reg1, reg2, reg3, 18H |
VCMPNGE_UQSS reg1, reg2, reg3 | VCMPSS reg1, reg2, reg3, 19H |
VCMPNGT_UQSS reg1, reg2, reg3 | VCMPSS reg1, reg2, reg3, 1AH |
VCMPFALSE_OSSS reg1, reg2, reg3 | VCMPSS reg1, reg2, reg3, 1BH |
VCMPNEQ_OSSS reg1, reg2, reg3 | VCMPSS reg1, reg2, reg3, 1CH |
VCMPGE_OQSS reg1, reg2, reg3 | VCMPSS reg1, reg2, reg3, 1DH |
VCMPGT_OQSS reg1, reg2, reg3 | VCMPSS reg1, reg2, reg3, 1EH |
VCMPTRUE_USSS reg1, reg2, reg3 | VCMPSS reg1, reg2, reg3, 1FH |
CASE (COMPARISON PREDICATE) OF
0: OP3 ← EQ_OQ; OP5 ← EQ_OQ; 1: OP3 ← LT_OS; OP5 ← LT_OS; 2: OP3 ← LE_OS; OP5 ← LE_OS; 3: OP3 ← UNORD_Q; OP5 ← UNORD_Q; 4: OP3 ← NEQ_UQ; OP5 ← NEQ_UQ; 5: OP3 ← NLT_US; OP5 ← NLT_US; 6: OP3 ← NLE_US; OP5 ← NLE_US; 7: OP3 ← ORD_Q; OP5 ← ORD_Q; 8: OP5 ← EQ_UQ; 9: OP5 ← NGE_US; 10: OP5 ← NGT_US; 11: OP5 ← FALSE_OQ; 12: OP5 ← NEQ_OQ; 13: OP5 ← GE_OS; 14: OP5 ← GT_OS; 15: OP5 ← TRUE_UQ; 16: OP5 ← EQ_OS; 17: OP5 ← LT_OQ; 18: OP5 ← LE_OQ; 19: OP5 ← UNORD_S; 20: OP5 ← NEQ_US; 21: OP5 ← NLT_UQ; 22: OP5 ← NLE_UQ; 23: OP5 ← ORD_S; 24: OP5 ← EQ_US;
25: OP5 ← NGE_UQ; 26: OP5 ← NGT_UQ; 27: OP5 ← FALSE_OS; 28: OP5 ← NEQ_OS; 29: OP5 ← GE_OQ; 30: OP5 ← GT_OQ; 31: OP5 ← TRUE_US; DEFAULT: Reserved
ESAC;
CMPSS (128-bit Legacy SSE version)
CMP0 ← DEST[31:0] OP3 SRC[31:0]; IF CMP0 = TRUE THEN DEST[31:0] ← FFFFFFFFH; ELSE DEST[31:0] ← 00000000H; FI; DEST[VLMAX-1:32] (Unmodified)
VCMPSS (VEX.128 encoded version)
CMP0 ← SRC1[31:0] OP5 SRC2[31:0]; IF CMP0 = TRUE THEN DEST[31:0] ← FFFFFFFFH; ELSE DEST[31:0] ← 00000000H; FI; DEST[127:32] ← SRC1[127:32] DEST[VLMAX-1:128] ← 0
CMPSS for equality:
__m128 _mm_cmpeq_ss(__m128 a, __m128 b)
CMPSS for less-than:
__m128 _mm_cmplt_ss(__m128 a, __m128 b)
CMPSS for less-than-or-equal:
__m128 _mm_cmple_ss(__m128 a, __m128 b)
CMPSS for greater-than:
__m128 _mm_cmpgt_ss(__m128 a, __m128 b)
CMPSS for greater-than-or-equal:
__m128 _mm_cmpge_ss(__m128 a, __m128 b)
CMPSS for inequality:
__m128 _mm_cmpneq_ss(__m128 a, __m128 b)
CMPSS for not-less-than:
__m128 _mm_cmpnlt_ss(__m128 a, __m128 b)
CMPSS for not-greater-than:
__m128 _mm_cmpngt_ss(__m128 a, __m128 b)
CMPSS for not-greater-than-or-equal:
__m128 _mm_cmpnge_ss(__m128 a, __m128 b)
CMPSS for ordered:
__m128 _mm_cmpord_ss(__m128 a, __m128 b)
CMPSS for unordered:
__m128 _mm_cmpunord_ss(__m128 a, __m128 b)
CMPSS for not-less-than-or-equal:
__m128 _mm_cmpnle_ss(__m128 a, __m128 b)
VCMPSS:
__m128 _mm_cmp_ss(__m128 a, __m128 b, const int imm)
Invalid if SNaN operand, Invalid if QNaN and predicate as listed in above table, Denormal.
See Exceptions Type 3.